
Tetrahedron Letters No. 38, pp 3313 - 3316, 1977. Pergamon Press. Printed in Great Britain.

THE PHOTOLYSIS OF 7-ACYLAMIDO--7-METHOXYCEPHALOSPORINS N. L. Abramson, A. W. Douglas, E. J. J. Grabowski and R. F. Czaja* Merck Sharp and Dohme Research Laboratories Division of Merck & Co., Inc. Rahway, New Jersey 07065

(Received in USA 23 June 1977; received in UK for publication 28 July 1977)

The dearth of information regarding the photoreactivity of cephalosporins^{1,2} and specifically 7-acylamido-7-methoxy cephalosporins, prompted us to examine the effect of uv light on CEFOXITIN $^{\textcircled{R}}$ (<u>la</u>) and related derivatives.

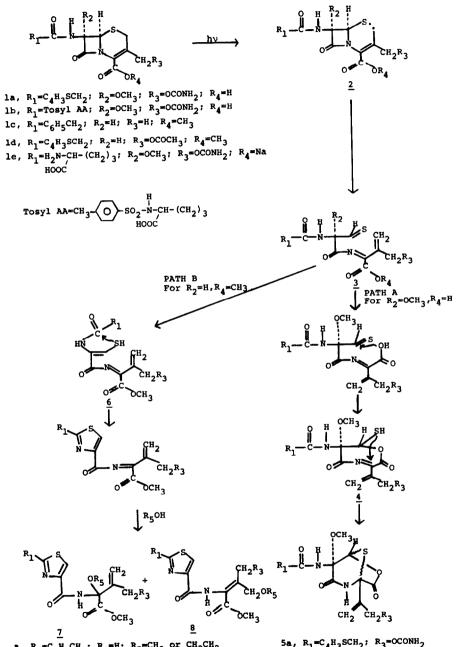
CEFOXITIN $^{\textcircled{B}}$ (<u>la</u>), on irradiation in methanol,³ was converted to essentially a single product. Isolation of the product (50% yield as an amorphous powder) was

achieved by concentrating the photomixture in <u>vacuo</u> and chromatographing the residue on silica gel (chloroform:ethyl acetate).

The following spectral data indicate that this photoproduct posseses isomeric structure $\underline{5a}$:^{4,5} $C_{16}H_{17}N_{3}O_{7}S_{2}$ (m/e, M⁺, Calcd. 427.0529; Observed, 427.0502); ¹³C nmr (Table 1); ¹H nmr (Acetone-d₆, TMS) $\delta = 3.20$ ppm (3H, s, \underline{OCH}_{3}), 3.95 (2H, s, thienyl-<u>CH</u>₂-), 4,75 (2H, s, -<u>CH</u>₂OCONH₂), [5.76, s and 5.83, s; 2H, C = <u>CH</u>₂], 6.2 (2H, OCONH₂, deut. exch.), 6.8-7.4 (3H, m, thienyl), 7.15 (1H, s, S-<u>C-H</u>). 7.95 (1H, s, N-C-C-<u>NH</u>, deut. exch.) 9.0 (1H, broad s, thienyl CH₂-C-<u>NH</u>, deut. exch.); ir $\vee \begin{bmatrix} THF \\ CH_{3}O \\ 0 \\ THF \\$

We propose that <u>la</u> is converted to <u>5a</u> via PATH A wherein the primary photoprocess is S-C homolysis (i.e. formation of <u>2</u>). The process is completed by the

TABLE	1.	C-13	NMR ^{a,b}	FOR	PHOTOPRODUCT	5a
-------	----	------	--------------------	-----	--------------	----


CARBON	CHEM. SHIFT (PPM)	CARBON	CHEM. SHIFT (PPM)
$CH_2 - C - N - O$	171.8)⊂= <u>C</u> H2	121.8
Lactone ,C O	170.2 ^C	снзо	85.7
Lactam ,C Q	168.3	HN Bridgehead <u>C</u> H	78.5 ^d
Carbamate , Č~	158.9	s ,o	
C=CH ₂	136.9	c-c-o	67.0
Thienyl 2'	137.0	s _ссо сн ₂ =с-сн ₂ -о	64.1
" 3'	127.6	-OCH3	52.5
" 4 "	127.6	ې ۲	
" 5'	126.1	Thienyl - <u>C</u> H ₂ -C-	38.1

a. Acetone-d₆, ppm relative to TMS=0.

b. Observed using a Varian CFT-20 spectrometer. c. ${}^{3}J_{CH} = 8.5 \text{ Hz} (-\underline{C}-O-C-\underline{H}).$ d. ${}^{1}J_{CH} = 181 \text{ Hz}.$

tautomerism of $\underline{2}$ to thicaldehyde $\underline{3}$ followed by the intramolecular cyclizations of the thicaldehyde, acid and imine, as shown, to give $\underline{5b}$.

Recently Maki and Sako² reported the photoconversion of either cephalosporins <u>lc</u> or <u>ld</u> to a mixture of thiazoles <u>7</u> and <u>8</u> under essentially the same reaction conditions and suggested <u>3</u> as an intermediate (PATH B) in their formation. Clearly, an important factor influencing the products obtained upon photolysis of cephalosporins is the type of substitution in the 7-position and the availability of the free acid function. In our case, the 7-methoxy group prevents the thioaldehyde <u>3</u> \longrightarrow thioenol <u>6</u> tautomerization. Thus, <u>5a</u> becomes the favored product. Moreover, this reaction sequence may be general for 7-acylamido-7-methoxy cephalosporins containing a 4-carboxy functionality. <u>lb</u> also underwent this rearrangement to <u>5b⁶</u> in methanol as well as acetonitrile. The sodium salt of cephamycin C (le) decomposed, and the methyl ester of <u>la</u> and the methoxy methyl ester of <u>lb</u> gave multicomponent product mixture when similarly photolyzed. These results emphasize further the role that the 4-carboxy group plays in this reaction sequence.

a, $R_1 = C_6 H_5 CH_2$; $R_3 = H$; $R_5 = CH_3$ or $CH_3 CH_2$ b, $R_1 = C_4 H_3 SCH_2$; $R_3 = OCOCH_3$; $R_5 = CH_3$ or $CH_3 CH_2$

5a, $R_1 = C_4 H_3 SCH_2$; $R_3 = OCONH_2$ b, $R_1 = Tosyl AA; R_3 = OCONH_2$

References and Notes

1. A. L. Demain, Nature (London), 210,426 (1966).

2. Y. Maki and M. Sako, J. Am. Chem. Soc., 97, 7168 (1975).

- 3. The irradiation of <u>la</u> (1.5 g. in 310 ml. methanol) was achieved by using a 450 watt medium pressure mercury arc lamp (Pyrex filter) under nitrogen. The conversion required less than 2 hours (35°) and could be followed by either tlc (silica gel, benzene:methanol:acetic acid, 80:18:2; <u>la</u>, Rf 0.1; <u>5a</u>. Rf 0.6.) or disappearance of uv absorption at 268 nm.
- 4. The relative stereochemistry of the methoxy and sulfur groups has not been determined. The nmr spectrum of the crude photomixture indicates a stereospecificity of > 90% for the overall process.
- 5. 1-β-[(2-Hydroxy-1-methylene)ethyl]-5-methoxy-7-oxo-5-[2-(2-thienyl)acetamide]--6-oxa-8-thia-2-aza-bicyclo[3.2.1]octane carbamate ester.
- 6. Included in the characteristic H-nmr (acetone-d₆, TMS) chemical shifts for $\underline{5b}$ were δ 5.73 and 5.80, 2H, s, C = \underline{CH}_2) and δ 7.05 (1H, s, S- \underline{C} -H).